Question : The simplified value of $\small \left (1-\frac{2xy}{x^{2}+y^{2}}\right )\div\left (\frac{x^{3}-y^{3}}{x-y}-3xy\right)$ is:
Option 1: $\frac{1}{x^{2}-y^{3}}$
Option 2: $\frac{1}{x^{2}+y^{2}}$
Option 3: $\frac{1}{x-y}$
Option 4: $\frac{1}{x+y}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{x^{2}+y^{2}}$
Solution : Given: $(1–\frac{2xy}{x^{2}+y^{2}})\div( \frac{x^{3}–y^{3}}{x–y}–3xy)$ = $\frac{(x^{2}+y^{2}–2xy}{x^{2}+y^{2}})\div( \frac{(x–y)(x^{2}+xy+y^{2})}{x–y}–3xy)$ = $\frac{(x–y)^{2}}{x^{2}+y^{2}}\div(x^{2}+xy+y^{2}–3xy)$ = $\frac{(x–y)^{2}}{x^{2}+y^{2}}\div(x^{2}+y^{2}–2xy)$ = $\frac{(x–y)^{2}}{x^{2}+y^{2}}\div(x–y)^{2}$ = $\frac{1}{x^{2}+y^{2}}$ Hence, the correct answer is $\frac{1}{x^{2}+y^{2}}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\cos\theta = \frac{x^2\:-\:y^2}{x^2\:+\:y^2}$, then the value of $\cot\theta$ is equal to:
Question : The value of $\left(2 \frac{6}{7}\right.$ of $\left.4 \frac{1}{5} \div \frac{2}{3}\right) \times 5 \frac{1}{9} \div\left(\frac{3}{4} \times 2 \frac{2}{3}\right.$ of $\left.\frac{1}{2} \div \frac{1}{4}\right)$ is:
Question : The value of $51 \div\left\{25+(25\right.$ of $12 \div 30)-\left(5^4 \div 5\right.$ of 125$\left.)\right\}$ is:
Question : The value of $\left(1 \frac{1}{3} \div 2 \frac{6}{7}\right.$ of $\left.5 \frac{3}{5}\right) \times\left(6 \frac{2}{5} \div 4 \frac{1}{2}\right.$ of $\left.5 \frac{1}{3}\right) \div\left(\frac{3}{4} \times 2 \frac{2}{3} \div \frac{5}{9}\right.$ of
Question : Simplify the following equation. What is the difference between the two values of $x$? $7 x+4\left\{x^2 \div(5 x \div 10)\right\}-3\left\{5 \frac{1}{3}-x^3 \div\left(3 x^2 \div x\right)\right\}=0$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile