Question : The simplified value of $\sqrt{900} + \sqrt{0.09} - \sqrt{0.000009}$ is:
Option 1: $30.27$
Option 2: $30.297$
Option 3: $30.097$
Option 4: $30.197$
Correct Answer: $30.297$
Solution : $\sqrt{900} + \sqrt{0.09} - \sqrt{0.000009}$ $ = \sqrt{900} + \sqrt{\frac{9}{100}} - \sqrt{\frac{9}{1000000}}$ $ = 30 + 0.3 - 0.003$ $ = 30.297$ Hence, the correct answer is $30.297$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : The simplified value of $(\sqrt{3}+1)( 10+\sqrt{12})(\sqrt{12}-2)(5-\sqrt{3})$ is:
Option 1: 16
Option 2: 88
Option 3: 176
Option 4: 132
Question : If $x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, then the value of $x^{3} + y^{3}$ is:
Option 1: 950
Option 2: 730
Option 3: 650
Option 4: 970
Question : If $a-\frac{1}{a}=4$, then the value of $a+\frac{1}{a}$ is:
Option 1: $5 \sqrt{5}$
Option 2: $4 \sqrt{5}$
Option 3: $2 \sqrt{5}$
Option 4: $3 \sqrt{5}$
Question : If $a= \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}}$, then the value of $(a^{2}-ax)$ is:
Option 1: 1
Option 2: 2
Option 3: –1
Option 4: 0
Question : What is the value of the positive square root of $(69+28\sqrt{5})$?
Option 1: $(7+2\sqrt{5})$
Option 2: $(7-2\sqrt{5})$
Option 3: $(2+7\sqrt{5})$
Option 4: $(2-7\sqrt{5})$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile