Question : The square root of $\frac{2+\sqrt{3}}{2}$ is:
Option 1: $\pm \frac{1}{\sqrt{2}}(\sqrt{3}+1)$
Option 2: $\pm \frac{1}{2}(\sqrt{3}-2)$
Option 3: $\text{none}$
Option 4: $\pm \frac{1}{2}(\sqrt{3}+1)$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\pm \frac{1}{2}(\sqrt{3}+1)$
Solution : Given: $\frac{2+\sqrt{3}}{2}$ $= \frac{1}{4}({4+2\sqrt{3}})$ $= \frac{1}{4}[1^2+(\sqrt{3})^2+2×1×\sqrt{3}]$ $= \frac{1}{4}(1+\sqrt{3})^2$ So, the square root of $\frac{2+\sqrt{3}}{2}$ $= \sqrt{\frac{2+\sqrt{3}}{2}}$ $= \sqrt{\frac{1}{4}(1+\sqrt{3})^2}$ $= \pm \frac{1}{2}(1+\sqrt{3})$ Hence, the correct answer is $\pm \frac{1}{2}(\sqrt{3}+1)$ .
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x-\frac{1}{x}=1$, then what is the value of $\left (\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x^{2}+1}-\frac{1}{x^{2}-1} \right)\;$?
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Question : In a $\triangle ABC, \angle B=\frac{\pi}{3}, \angle C=\frac{\pi}{4}$ and D divides BC internally in the ratio 1 : 3, then $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to:
Question : If $(2+\sqrt{3})a=(2-\sqrt{3})b=1$, then the value of $\frac{1}{a}+\frac{1}{b}$ is:
Question : If $n= 7+4\sqrt{3}$, the value of $(\sqrt{n}+\frac{1}{\sqrt{n}})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile