1 View

Question : The three sides of a triangle are 7 cm, 9 cm, and 8 cm. What is the area of the triangle?

Option 1: $12 \sqrt{3} \;\mathrm{Sq} . \mathrm{cm}$

Option 2: $10\sqrt{3} \;\mathrm{Sq} . \mathrm{cm}$

Option 3: $12 \sqrt{5} \;\mathrm{Sq} . \mathrm{cm}$

Option 4: $2 \sqrt{5} \;\mathrm{Sq} . \mathrm{cm}$


Team Careers360 25th Jan, 2024
Answer (1)
Team Careers360 27th Jan, 2024

Correct Answer: $12 \sqrt{5} \;\mathrm{Sq} . \mathrm{cm}$


Solution : Using the formula:
$s = \frac{(a + b + c)}{2}$
$s = \frac{(7 + 9 + 8)}{2}$
$s = \frac{24}{2}$
$s = 12$ cm
Now, plug the values of a, b, c, and s into Heron's formula to find the area of the triangle:
$\sqrt{(s(s - a)(s - b)(s - c))}$
$=\sqrt{(12(12 - 7)(12 - 9)(12 - 8))}$
$=\sqrt{(12 × 5 × 3 × 4)}$
$=12\sqrt{5}$ Sq. cm
Therefore, the area of the triangle with side lengths 7 cm, 9 cm, and 8 cm is approximately $12\sqrt{5}$ Sq. cm
Hence, the correct answer is $12 \sqrt{5} \;\mathrm{Sq}. \mathrm{cm}$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books