4 Views

Question : The tower is 50 metres high, its shadow is $x$ metres shorter when the sun's elevation is $45°$ than when it is $30°$. The value of $x$ (in metres) is:

Option 1: $50\sqrt{3}$

Option 2: $50\left ({\sqrt3-1} \right)$

Option 3: $50\left ({\sqrt3+1} \right)$

Option 4: $50$


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $50\left ({\sqrt3-1} \right)$


Solution :
Let the height of the tower be $BC$, the shadow of the tower when the sun’s altitude is 30° be $AB$ and the shadow of the tower when the sun’s elevation is 45° be $DB$.
Given: $BC$ = 50 m
And $AB - BD = x$ m
⇒ $AD$ = $x$ m (see figure)
Now in right angle triangle $\triangle ABC$,
$\tan\angle CAB=\frac{BC}{AB}$
⇒ $\tan 30^{\circ} = \frac{50}{AB}$
⇒ $AB = \frac{50}{\tan 30^{\circ}} = 50\sqrt{3}$ m
Now in right angle triangle $\triangle CBD$,
$\tan\angle CDB = \frac{BC}{BD}$
⇒ $\tan45^\circ = \frac{50}{BD}$
⇒ $BD = 50$ m
Now, $AD = AB - BD = 50\sqrt3-50$
⇒ $AD =50(\sqrt3 - 1)$ m
Hence, the correct answer is $50(\sqrt3 - 1)$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books