Question : The value of $\sec x - \cos x = $?
Option 1: $\tan x \sin x$
Option 2: $\sec x \tan x$
Option 3: $\tan x \cos x$
Option 4: $\sec x \cos x$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\tan x \sin x$
Solution : $\sec x - \cos x$ $ = \frac{1}{\cos x} - \cos x $ $ = \frac{1- \cos ^{2}x}{\cos x}$ $ = \frac{\sin^{2}x}{\cos x}$ $ = \frac{\sin x }{\cos x}\times \sin x$ $ = \tan x \sin x$ Hence, the correct answer is $\tan x \sin x$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Find the value of: $\sqrt{\frac{1 - \sin 3 \theta}{1 + \sin 3 \theta}}$
Question : What will be the value of $\cos x \operatorname{cosec} x - \sin x \sec x$?
Question : If $\tan x = \frac{7}{5}$, the value of $\frac{9 \sin x – \frac{42}{5} \cos x}{15 \sin x + 21 \cos x}$ is:
Question : If $0°<A<90°$, the value of $\frac{\tan A\ -\ \sec A\ -\ 1}{\tan A\ +\ \sec A\ +\ 1}$ is:
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile