Question : The value of $x$ in the expression $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ is:
Option 1: $\frac{2}{\sqrt{3}}$
Option 2: $\frac{3\sqrt{3}}{4}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\frac{\sqrt{3}}{2}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{3}}{2}$
Solution : $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ Taking L.H.S. $⇒\tan^{2}\frac{\pi}{4} - \cos^{2}\frac{\pi}{3} = 1 - \left(\frac{1}{2}\right)^{2} = 1 - \frac{1}{4} = \frac{3}{4}$ Taking R.H.S. $⇒x\sin\frac{\pi}{4}\cos\frac{\pi}{4}\tan\frac{\pi}{3} = x \times \frac{1}{2} \times\sqrt{3} = \frac{x\sqrt{3}}{2}$ $⇒\frac{3}{4} = \frac{x\sqrt{3}}{2}$ $⇒x = \frac{3}{4} \times \frac{2}{\sqrt{3}} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}$ Hence, the correct answer is $\frac{\sqrt{3}}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (x - y) = \frac{1}2$ and $\cos (x + y) = \frac{1}2$, then what is the value of $\sin x \cos x + 2\sin^2x + cos^3x \sec x$?
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Question : If $\theta+\phi=\frac{\pi}{2}$ and $\sin\theta=\frac{1}{2}$, then the value of $\sin\phi$ is:
Question : If $(\sin \theta-\cos \theta)=0$, then the value of $\sin\;(\pi-\theta)+\sin \left(\frac{\pi}{2}-\theta\right)$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile