Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Option 1: $\sec A-\tan A$
Option 2: $\operatorname{cosec} A+\cot A$
Option 3: $\sec A+\tan A$
Option 4: $\operatorname{cosec} A-\cot A$
Correct Answer: $\sec A+\tan A$
Solution : $\sqrt{\frac{1+\sin A}{1-\sin A}}$ = $\sqrt{\frac{(1+\sin A)^2}{(1-\sin A)(1+\sin A)}}$ = $\sqrt{\frac{(1+\sin A)^2}{1-\sin^2 A}}$ = $\sqrt{\frac{(1+\sin A)^2}{\cos^2 A}}$ = $\frac{(1+\sin A)}{\cos A}$ = $\sec A + \tan A$ Hence, the correct answer is $\sec A + \tan A$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Question : If the value of $\operatorname{cosec} A + \cot A = m$, then the value of $\operatorname{cosec} A - \cot A$ is:
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile