Question : The value of $\frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}$ is $(0°<A<90°)$:
Option 1: $2\operatorname{cosec}A$
Option 2: $2 \sec A$
Option 3: $2 \sin A$
Option 4: $2 \cos A$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2\operatorname{cosec}A$
Solution : Given: $\frac{\sin A}{1+ \cos A}+\frac{\sin A}{1- \cos A}$ = $\frac{\sin A(1–\cos A)+\sin A (1+\cos A)}{(1+ \cos A)(1- \cos A)}$ = $\frac{\sin A–\sin A \cos A+\sin A+\sin A \cos A}{(1- \cos^{2} A)}$ = $\frac{2\sin A}{\sin^{2}A}$ = $\frac{2}{\sin A}$ = $2 \operatorname{cosec}A$ Hence, the correct answer is $2 \operatorname{cosec}A$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $0°<A<90°$, the value of $\frac{\tan A\ -\ \sec A\ -\ 1}{\tan A\ +\ \sec A\ +\ 1}$ is:
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{(1+\sec \theta \operatorname{cosec} \theta)^2(\sec \theta-\tan \theta)^2(1+\sin \theta)}{(\sin \theta+\sec \theta)^2+(\cos \theta+\operatorname{cosec} \theta)^2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : The expression $\frac{\cos ^4 \theta-\sin ^4 \theta+2 \sin ^2 \theta+3}{(\operatorname{cosec} \theta+\cot \theta+1)(\operatorname{cosec} \theta-\cot \theta+1)-2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile