Question : The value of $\text{cosec}^{2}\: 18°-\frac{1}{\cot^{2}72°}$ is:
Option 1: $\frac{1}{\sqrt3}$
Option 2: $\frac{\sqrt2}{3}$
Option 3: $\frac{1}{2}$
Option 4: $1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : $\text{cosec}^{2}\: 18°-\frac{1}{\cot^{2}72°}$ $= \text{cosec}^{2}\: 18° - \frac{1}{\cot^{2}(90-18)°}$ $= \text{cosec}^{2}\: 18° - \frac{1}{\tan^{2}18°}$ $= \text{cosec}^{2}\: 18° - \cot^{2}18°$ $= 1$ Hence, the correct answer is $1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : $\triangle$XYZ is right angled at Y. If $\angle$X = 60°, then find the value of $(\sec Z+\frac{2}{\sqrt3})$.
Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Question : The value of $\cot 13° \cot 27° \cot 60° \cot 63° \cot 77°$ is:
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : The value of $\cos \ 0°+\cos\ 1°+\cos\ 2°......\cos\ 180°$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile