Question : The value of $\cos \ 0°+\cos\ 1°+\cos\ 2°......\cos\ 180°$ is:
Option 1: $0$
Option 2: $1$
Option 3: $\frac{\sqrt3}{2}$
Option 4: $\frac{1}{2}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $\cos 0°+\cos 1°+\cos 2°......\cos 180°$ We know the trigonometric identity, $\cos \theta+\cos (180°–\theta)=0$. $\cos 0°+\cos 1°+\cos 2°......\cos 180°= (\cos 0°+\cos 180°)+(\cos\ 1°+\cos 179°)......(\cos 89°+\cos 91°)+\cos\ 90°= 0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cos 20°= m$ and $\cos 70°=n$, then the value of $m^2+n^2$:
Question : What is the value of $\frac{3 \operatorname{cosec} 42°}{\sec 48°}-\frac{5 \cos 32°}{\sin 58°}$?
Question : $\triangle$XYZ is right angled at Y. If $\angle$X = 60°, then find the value of $(\sec Z+\frac{2}{\sqrt3})$.
Question : What is the value of $\sec 330°$?
Question : The value of $\text{cosec}^{2}\: 18°-\frac{1}{\cot^{2}72°}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile