Question : The value of $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}$ is:
Option 1: $\sqrt{2}$
Option 2: $\sqrt{3}$
Option 3: $1$
Option 4: $4(\sqrt{3}+\sqrt{2})$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}$ $= \frac{1}{(1+\sqrt{3})+\sqrt{2}}+\frac{1}{(1+\sqrt{3})-\sqrt{2}}$ $= \frac{1+\sqrt{3}-\sqrt{2}+1+\sqrt{3}+\sqrt{2}}{[(1+\sqrt{3})+\sqrt{2}][(1+\sqrt{3})-\sqrt{2}]}$ $= \frac{2\sqrt{3}+2}{(1+\sqrt{3})^{2}-(\sqrt{2})^{2}}$ $= \frac{2\sqrt{3}+2}{1+3+2\sqrt{3}-2}$ $= \frac{2\sqrt{3}+2}{2\sqrt{3}+2}$ $=1$ Hence, the correct answer is $1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : The value of $x$ in the expression $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ is:
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile