11 Views
Question : The value of $\frac{(243)^\frac{n}{5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ is:
Option 1: 3
Option 2: 9
Option 3: 6
Option 4: 12
Answer (1)
Correct Answer: 9
Solution :
Given: $\frac{(243)^\frac{n}{5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$
= $\frac{(3^5)^\frac{n}{5}\times 3^{2n+1}}{3^{2n}\times 3^{n-1}}$
= $\frac{3^n\times 3^{2n+1}}{3^{2n}\times 3^{n-1}}$
= $\frac{3^{3n+1}}{3^{3n-1}}$
= $\frac{3^{3n}×3^1}{3^{3n}×3^{-1}}$
= ${3^{2}}$
= $9$
Hence, the correct answer is 9.
Know More About
Related Questions
TOEFL ® Registrations 2025
Apply
Accepted by 13,000 universities worldwide | Offered in 200+ countries | 40 million people have taken TOEFL Test
Upcoming Exams
Application Date:
13 Apr, 2025
- 10 May, 2025
Application Date:
16 May, 2025
- 14 Jun, 2025
Preliminary Exam
Exam Date:
25 May, 2025
- 25 May, 2025
Admit Card Date:
9 Jun, 2025
- 30 Jun, 2025
Exam Date:
20 Jul, 2025
- 20 Jul, 2025