Question : The value of $\cot 13° \cot 27° \cot 60° \cot 63° \cot 77°$ is:
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $0$
Option 3: $\sqrt{3}$
Option 4: $1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sqrt{3}}$
Solution : Consider, $\cot 13° \cot 27° \cot 60° \cot 63° \cot 77°$ We know, $\cot(90°-\theta)=\tan\theta$ and $\tan\theta=\frac{1}{\cot\theta}$ $=\cot13°\cot27°\cot60°\cot(90°-27°)\cot(90°-13°)$ $=\cot13°\cot27°\cot60°\tan27°\tan13°$ $=\cot13°\cot27°\cot60°\cdot\frac{1}{\cot27°}\cdot\frac{1}{\cot13°}$ $=\cot60°$ $ =\frac{1}{\sqrt3}$ Hence, the correct answer is $\frac{1}{\sqrt3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\cot \theta$ when $\theta=60^\circ$?
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile