Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Option 1: $\sec \theta$
Option 2: $\sin \theta$
Option 3: $\cot \theta$
Option 4: $\tan \theta$
Correct Answer: $\cot \theta$
Solution :
$\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$
$=\frac{\cos \theta (2 \cos^2 \theta - 1)}{\sin \theta (1 - 2 \sin^2 \theta)}$
We know that $\cos2 \theta = 1 - 2\sin^2 \theta= 2 \cos^2 \theta-1$,
Substituting these identities into the expression,
$=\frac{\cos \theta \cos2 \theta}{\sin \theta \cos2 \theta}$
$=\frac{\cos \theta}{\sin \theta} = \cot \theta$
Hence, the correct answer is $\cot \theta$.
Related Questions
Know More about
Staff Selection Commission Sub Inspector ...
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Get Updates BrochureYour Staff Selection Commission Sub Inspector Exam brochure has been successfully mailed to your registered email id “”.