Question : The value of $\frac{(m^2+n^2)(m-n)-(m-n)^3}{(m^2 n-m n^2)}$ is:
Option 1: $m + n$
Option 2: $m - n$
Option 3: $2$
Option 4: $\frac{m}{n}$
Correct Answer: $2$
Solution : $\frac{(m^2+n^2)(m-n)-(m-n)^3}{(m^2 n-m n^2)}$ = $\frac{(m-n)[(m^2+n^2)-(m-n)^2]}{mn(m-n)}$ = $\frac{[m^2+n^2-m^2-n^2+2mn]}{mn}$ = $\frac{2mn}{mn}$ = $2$ Hence, the correct answer is 2.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{A}{L}+\frac{M}{B}=1$ and $\frac{B}{M}+\frac{N}{C}=1$, then the value of $\frac{L}{A}+\frac{C}{N}$ is:
Question : If $\cos 48^{\circ}=\frac{m}{n}$, then $\sec 48^{\circ}-\cot 42^{\circ}$ is equal to:
Question : Find the value of $\frac{(243)^{\frac{n}{5}}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$.
Question : The value of $\frac{(243)^\frac{n}{5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ is:
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile