Question : The value of $\left(2 \cos ^2 \theta-1\right)\left[\frac{1+\tan \theta}{1-\tan \theta}+\frac{1-\tan \theta}{1+\tan \theta}\right]$ is:
Option 1: $2$
Option 2: $0$
Option 3: $\frac{\sqrt{3}}{2}$
Option 4: $1$
Correct Answer: $2$
Solution : Given expression, $\left(2 \cos ^2 \theta-1\right)\left[\frac{1+\tan \theta}{1-\tan \theta}+\frac{1-\tan \theta}{1+\tan \theta}\right]$ We know, $\tan\theta=\frac{\sin\theta}{\cos\theta}$ = $(2\cos^2\theta-(\sin^2\theta+\cos^2\theta))\left[\frac{1+\frac{\sin\theta}{\cos\theta}}{1-\frac{\sin\theta}{\cos\theta}}+\frac{1-\frac{\sin\theta}{\cos\theta}}{1+\frac{\sin\theta}{\cos\theta}}\right]$ = $(2\cos^2\theta-\sin^2\theta-\cos^2\theta))\left[\frac{\cos\theta+\sin\theta}{\cos\theta-\sin\theta}+\frac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta}\right]$ = $(\cos^2\theta-\sin^2\theta)\left[\frac{(\cos\theta+\sin\theta)^2+(\cos\theta-\sin\theta)^2}{(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)}\right]$ = $(\cos^2\theta-\sin^2\theta)\left[\frac{\cos^2\theta+\sin^2\theta+2\sin\theta\cos\theta+\cos^2\theta+\sin^2\theta-2\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta}\right]$ = $1+1$ [As $\cos^2\theta+\sin^2\theta=1$] = $2$ Hence, the correct answer is $2$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta+\tan \theta$ is:
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta-\tan \theta$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile