Question : The value of $(\operatorname{cosec}A+\cot A)(1 - \cos A)$ is:
Option 1: $\cos A$
Option 2: $\tan A$
Option 3: $\cot A$
Option 4: $\sin A$
Correct Answer: $\sin A$
Solution : $(\operatorname{cosec}A+\cot A)(1 - \cos A)$ $=\left(\frac{1}{\sin A} + \frac{\cos A}{\sin A}\right)(1 - \cos A)$ $=\left(\frac{1 + \cos A}{\sin A}\right)(1 - \cos A)$ $=\frac{1 - \cos^2 A}{\sin A}$ $=\frac{\sin^2 A}{\sin A}$ [We know that $1 - \cos^2 A = \sin^2 A$] $=\sin A$ Hence, the correct answer is $\sin A$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Question : What is the value of $\frac{\sin (A+B)}{\sin A \cos B}$?
Question : What is the value of the following in terms of trigonometric ratios? $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}$
Question : If $A+B=90^{\circ}$, then the expression $\frac{\cot A}{\cot B}+\cos ^2 A+\cos ^2 B$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile