Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Option 1: $\frac{1}{2}$
Option 2: $3$
Option 3: $0$
Option 4: $2$
Correct Answer: $3$
Solution : $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ $=\frac{\sin A}{\frac{\cos A}{\sin A}+\frac{1}{\sin A}}-\frac{\sin A}{\frac{\cos A}{\sin A}-\frac{1}{\sin A}}+1$ $=\frac{\sin^2 A}{\cos A+1}-\frac{\sin^2 A}{\cos A-1}+1$ $=\frac{\sin^2 A}{1+\cos A}+\frac{\sin^2 A}{1-\cos A}+1$ $=\sin^2 A[\frac{1}{1+\cos A}+\frac{1}{1-\cos A}]+1$ $=\sin^2 A[\frac{2}{1-\cos ^2A}]+1$ $=\sin^2 A[\frac{2}{\sin ^2A}]+1$ $=2+1$ $=3$ Hence, the correct answer is $3$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : If the value of $\operatorname{cosec} A + \cot A = m$, then the value of $\operatorname{cosec} A - \cot A$ is:
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Question : What is the value of the following in terms of trigonometric ratios? $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}$
Question : If $\operatorname{cosec} A+\cot A=3$, $0 \leq A \leq 90^{\circ}$, then find the value of cos A.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile