Question : The value of $\frac{\left(\cos 9^{\circ}+\sin 81^{\circ}\right)\left(\sec 9^{\circ}+{\operatorname{cosec}} \;81^{\circ}\right)}{{\operatorname{cosec}}^2 \;71^{\circ}+\cos ^2 15^{\circ}-\tan ^2 19^{\circ}+\cos ^2 75^{\circ}} $ is:
Option 1: 1
Option 2: 4
Option 3: 5
Option 4: 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 2
Solution : Given: $\frac{\left(\cos 9^{\circ}+\sin 81^{\circ}\right)\left(\sec 9^{\circ}+{\operatorname{cosec}} \;81^{\circ}\right)}{{\operatorname{cosec}}^2 \;71^{\circ}+\cos ^2 15^{\circ}-\tan ^2 19^{\circ}+\cos ^2 75^{\circ}} $ $= \frac{\left(\cos 9^{\circ}+\sin (90^\circ - 9^{\circ})\right)\left(\sec 9^{\circ}+\operatorname{cosec}(90^\circ - 9^{\circ})\right)}{{\operatorname{cosec}}^2 \;(90^\circ- 19^{\circ})+\cos ^2 15^{\circ}-\tan ^2 19^{\circ}+\cos ^2 (90^\circ - 75^{\circ})} $ $= \frac{\left(\cos 9^{\circ}+\cos 9^{\circ}\right)\left(\sec 9^{\circ}+\sec 9^{\circ}\right)}{\sec^2 19^{\circ}+\cos ^2 15^{\circ}-\tan ^2 19^{\circ}+\sin ^2 15^\circ} $ $= \frac{2 \cos 9^{\circ} \times 2 \sec 9^{\circ}}{2}$ $= 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : Let $0^{\circ}<\theta<90^{\circ}$, $\left(1+\cot ^2 \theta\right)\left(1+\tan ^2 \theta\right) × (\sin \theta-\operatorname{cosec} \theta)(\cos \theta-\sec \theta)$ is equal to:
Question : The value of
Question : What is the value of $\frac{\cos 50^{\circ}}{\sin 40^{\circ}}+\frac{3 \operatorname{cosec} 80^{\circ}}{\sec 10^{\circ}}–2 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile