Question : The value of $\frac{1}{4}+\frac{\left[(20.35)^2-(8.35)^2\right] \times 0.0175}{(1.05)^2+(1.05)(27.65)}$ is:
Option 1: $\frac{9}{20}$
Option 2: $\frac{7}{20}$
Option 3: $\frac{3}{20}$
Option 4: $\frac{3}{10}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{9}{20}$
Solution : $\frac{1}{4}+\frac{\left[(20.35)^2-(8.35)^2\right] \times 0.0175}{(1.05)^2+(1.05)(27.65)}$ $=\frac{1}{4}+\frac{\left[(20.35+8.35)(20.35-8.35)\right] \times 0.0175}{(1.05)[1.05+27.65]}$ $=\frac{1}{4}+\frac{\left[(12)(28.70)\right] \times 0.0175}{(1.05)[28.70]}$ $=\frac{1}{4}+\frac{12 \times 0.0175}{(1.05)}$ $=\frac{1}{4}+\frac{1}{5}$ $=\frac{9}{20}$ Hence, the correct answer is $\frac{9}{20}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : The value of $\left(2 \frac{6}{7}\right.$ of $\left.4 \frac{1}{5} \div \frac{2}{3}\right) \times 5 \frac{1}{9} \div\left(\frac{3}{4} \times 2 \frac{2}{3}\right.$ of $\left.\frac{1}{2} \div \frac{1}{4}\right)$ is:
Question : The value of $15 \div 8-\frac{5}{4}$ of $\left(\frac{8}{3} \times \frac{9}{16}\right)+\left(\frac{9}{8} \times \frac{3}{4}\right)-\left(\frac{5}{32} \div \frac{5}{7}\right)+\frac{3}{8}$ is:
Question : What is the value of S $=\frac{1}{1×3×5}+\frac{1}{1×4}+\frac{1}{3×5×7}+\frac{1}{4×7}+\frac{1}{5×7×9}+\frac{1}{7×10}+....$ Up to 20 terms, then what is the value of S?
Question : The value of $\left(1 \frac{1}{3} \div 2 \frac{6}{7}\right.$ of $\left.5 \frac{3}{5}\right) \times\left(6 \frac{2}{5} \div 4 \frac{1}{2}\right.$ of $\left.5 \frac{1}{3}\right) \div\left(\frac{3}{4} \times 2 \frac{2}{3} \div \frac{5}{9}\right.$ of
Question : If $M =\left ( \frac{3}{7} \right ) ÷ \left ( \frac{6}{5} \right ) ×\left ( \frac{2}{3} \right ) + \left ( \frac{1}{5} \right ) ×\left ( \frac{3}{2} \right )$ and
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile