Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Option 1: $2-2 \sqrt{2}$
Option 2: $4+2 \sqrt{2}$
Option 3: $4-2 \sqrt{2}$
Option 4: $2+2 \sqrt{2}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $4-2 \sqrt{2}$
Solution : This is a telescoping series, where each term cancels out a part of the next term. $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ Rationalising the denominator and use the formula $a^2 - b^2 = (a+b)(a-b)$, we get, $=\frac{\sqrt{15}+4}{1}-\frac{\sqrt{15}+\sqrt{14}}{1}+\frac{\sqrt{14}+\sqrt{13}}{1}-\frac{\sqrt{13}+\sqrt{12}}{1}+\frac{\sqrt{12}+\sqrt{11}}{1}-\frac{\sqrt{11}+\sqrt{10}}{1}+\frac{\sqrt{10}+3}{1}-\frac{3+\sqrt{8}}{1}$ $=\sqrt{15}+4-\sqrt{15}-\sqrt{14}+\sqrt{14}+\sqrt{13}-\sqrt{13}-\sqrt{12}+\sqrt{12}+\sqrt{11}-\sqrt{11}-\sqrt{10}+\sqrt{10}+3-3-\sqrt{8}$ $=4-\sqrt{8}$ $=4-2\sqrt{2}$ Hence, the correct answer is $4-2\sqrt{2}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : The value of $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$ is equal to:
Question : What is the value of $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}–\sqrt{5}} \div \frac{\sqrt{14}+\sqrt{10}}{\sqrt{14}–\sqrt{10}}+\frac{\sqrt{10}}{\sqrt{5}}$?
Question : If $y+\frac{1}{y}=11$, then the value of $y^3-\frac{1}{y^3}$ is:
Question : If $2=x+\frac{1}{1+\frac{1}{5+\frac{1}{2}}}$, then the value of $x$ is equal to:
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile