Question : The value of $\frac{4 \tan ^2 30^{\circ}+\sin ^2 30^{\circ} \cos ^2 45^{\circ}+\sec ^2 48^{\circ}-\cot ^2 42^{\circ}}{\cos 37^{\circ} \sin 53^{\circ}+\sin 37^{\circ} \cos 53^{\circ}+\tan 18^{\circ} \tan 72^{\circ}}$ is:
Option 1: $\frac{35}{48}$
Option 2: $\frac{59}{48}$
Option 3: $\frac{49}{24}$
Option 4: $\frac{35}{24}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{59}{48}$
Solution : Given: $\frac{4 \tan ^2 30^{\circ}+\sin ^2 30^{\circ} \cos ^2 45^{\circ}+\sec ^2 48^{\circ}-\cot ^2 42^{\circ}}{\cos 37^{\circ} \sin 53^{\circ}+\sin 37^{\circ} \cos 53^{\circ}+\tan 18^{\circ} \tan 72^{\circ}}$ We know that $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$ $\sin 30^{\circ} = \frac{1}{2}$ $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$ $\cos 37^{\circ} = \cos (90^{\circ} - 53^{\circ}) = \sin 53^{\circ}$ $\sin 37^{\circ} = \sin (90^{\circ} - 53^{\circ}) = \cos 53^{\circ}$ $\tan 18^{\circ} \tan 72^{\circ} = 1$ (since $18^{\circ}$ and $72^{\circ}$ are complementary angles) Putting the values, we get: $= \frac{4 (\frac{1}{\sqrt{3}})^2 + (\frac{1}{2})^2 (\frac{1}{\sqrt{2}})^2 + \sec ^2 48^{\circ} - \tan ^2 48^{\circ}}{\sin 53^{\circ} \sin 53^{\circ} + \cos 53^{\circ} \cos 53^{\circ} + 1}$ $= \frac{4 (\frac{1}{3}) + \frac{1}{8} +1}{(\sin ^2 53^{\circ} + \cos ^2 53^{\circ}) + 1}$ Since $\sin ^2 \theta + \cos ^2 \theta = 1$ for any angle $\theta$, the denominator becomes $1 + 1 = 2$. So, the expression simplifies to: $=\frac{4 (\frac{1}{3}) + \frac{1}{8} + 1}{2}$ $=\frac{ (\frac{4}{3}) + \frac{1}{8} + 1}{2}$ $=\frac{ (\frac{32+3+24}{24}) }{2}$ $=(\frac{59}{48})$ Hence, the correct answer is $(\frac{59}{48})$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : The value of $\frac{5 \cos ^2 60^{\circ}+4 \sec ^2 30^{\circ}-\tan ^2 45^{\circ}}{\tan ^2 60^{\circ}-\sin ^2 30^{\circ}-\cos ^2 45^{\circ}}$ is:
Question : What is the value of $\sec^2 54^{\circ}-\cot 2 36^{\circ}+\frac{3}{2} \sin^2 37^{\circ} \times \sec^2 53^{\circ}+\frac{2}{\sqrt{3}} \tan 60^{\circ}$?
Question : $\cos ^2 35^{\circ}+\cos 55^{\circ} \cdot \sin 35^{\circ}+\frac{\tan 34^{\circ}}{\cot 56^{\circ}}=$________.
Question : Find the value of the given expression. $\frac{4}{3} \tan^2 45^{\circ}+3 \cos^2 30^{\circ}-2 \sec^2 30^{\circ}-\frac{3}{4} \cot^2 60^{\circ}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile