7 Views

Question : The value of $\frac{4 \tan ^2 30^{\circ}+\sin ^2 30^{\circ} \cos ^2 45^{\circ}+\sec ^2 48^{\circ}-\cot ^2 42^{\circ}}{\cos 37^{\circ} \sin 53^{\circ}+\sin 37^{\circ} \cos 53^{\circ}+\tan 18^{\circ} \tan 72^{\circ}}$ is:

Option 1: $\frac{35}{48}$

Option 2: $\frac{59}{48}$

Option 3: $\frac{49}{24}$

Option 4: $\frac{35}{24}$


Team Careers360 16th Jan, 2024
Answer (1)
Team Careers360 18th Jan, 2024

Correct Answer: $\frac{59}{48}$


Solution : Given: $\frac{4 \tan ^2 30^{\circ}+\sin ^2 30^{\circ} \cos ^2 45^{\circ}+\sec ^2 48^{\circ}-\cot ^2 42^{\circ}}{\cos 37^{\circ} \sin 53^{\circ}+\sin 37^{\circ} \cos 53^{\circ}+\tan 18^{\circ} \tan 72^{\circ}}$
We know that $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$
$\sin 30^{\circ} = \frac{1}{2}$
$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$
$\cos 37^{\circ} = \cos (90^{\circ} - 53^{\circ}) = \sin 53^{\circ}$
$\sin 37^{\circ} = \sin (90^{\circ} - 53^{\circ}) = \cos 53^{\circ}$
$\tan 18^{\circ} \tan 72^{\circ} = 1$ (since $18^{\circ}$ and $72^{\circ}$ are complementary angles)
Putting the values, we get:
$= \frac{4 (\frac{1}{\sqrt{3}})^2 + (\frac{1}{2})^2 (\frac{1}{\sqrt{2}})^2 + \sec ^2 48^{\circ} - \tan ^2 48^{\circ}}{\sin 53^{\circ} \sin 53^{\circ} + \cos 53^{\circ} \cos 53^{\circ} + 1}$
$= \frac{4 (\frac{1}{3}) + \frac{1}{8} +1}{(\sin ^2 53^{\circ} + \cos ^2 53^{\circ}) + 1}$
Since $\sin ^2 \theta + \cos ^2 \theta = 1$ for any angle $\theta$, the denominator becomes $1 + 1 = 2$.
So, the expression simplifies to:
$=\frac{4 (\frac{1}{3}) + \frac{1}{8} + 1}{2}$
$=\frac{ (\frac{4}{3}) + \frac{1}{8} + 1}{2}$
$=\frac{ (\frac{32+3+24}{24}) }{2}$
$=(\frac{59}{48})$
Hence, the correct answer is $(\frac{59}{48})$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books