Question : The value of $\frac{\sin ^2 52^{\circ}+2+\sin ^2 38^{\circ}}{4 \cos ^2 43^{\circ}-5+4 \cos ^2 47^{\circ}}$ is:
Option 1: $3$
Option 2: $\frac{1}{3}$
Option 3: $-\frac{1}{3}$
Option 4: $-3$
Correct Answer: $-3$
Solution : Given: $\frac{\sin ^2 52^{\circ}+2+\sin ^2 38^{\circ}}{4 \cos ^2 43^{\circ}-5+4 \cos ^2 47^{\circ}}$ = $\frac{\sin ^2 52^{\circ}+2+\sin ^2 (90^{\circ} - 52^{\circ})}{4 \cos ^2 43^{\circ}-5+4 \cos ^2 (90^{\circ} - 43^{\circ})}$ = $\frac{\sin ^2 52^{\circ}+2+\cos ^2 52^{\circ}}{4 \cos ^2 43^{\circ}-5+4 \sin ^2 43^{\circ}}$ = $\frac{1+2}{4 (\cos ^2 43^{\circ}+ \sin ^2 43^{\circ})-5}$ = $\frac{1+2}{4-5}$ = $\frac{3}{-1}$ = $-3$ Hence, the correct answer is $-3$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\frac{\cos 65^{\circ}}{\sin 25^{\circ}}+\frac{5 \sin 19^{\circ}}{\cos 71^{\circ}}-\frac{3 \cos 28^{\circ}}{\sin 62^{\circ}}$.
Question : Find the value of $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$.
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}+\sec 45^{\circ} × \sin 45^{\circ}}{\sec 60^{\circ}+{\text{cosec}} 30^{\circ}}$ is:
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Question : The value of the expression $\cos ^2 45^{\circ}+\cos ^2 135^{\circ}+\cos ^2 225^{\circ}+\cos ^2 315^{\circ}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile