Question : The value of $\frac{4-\sqrt {0.04}}{4+ \sqrt {0.4}}$ is close to:
Option 1: 0.04
Option 2: 0.8
Option 3: 1
Option 4: 1.4
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0.8
Solution : We have, $\frac{4 - \sqrt {0.04}}{4+ \sqrt {0.4}}$ $=\frac{4 - \sqrt {0.04}}{4+ \sqrt {0.4}}$ $= \frac{4 - 0.2}{4+ 0.632}$ $=\frac{3.8}{4.632}$ $=0.8206 \approx 0.8$ Hence, the correct answer is 0.8
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}$ is:
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Question : The value of $x$ in the expression $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ is:
Question : The value of exponential form of $\sqrt{\sqrt{2}\sqrt{3}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile