Question : The value of $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$ is equal to:
Option 1: $\frac{1}{4}$
Option 2: $1$
Option 3: $\frac{2}{3}$
Option 4: $\frac{1}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : Given: The expression is $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$. Rationalize the fraction, $\frac{1}{8+2\sqrt{15}}=\frac{1\times (8–2\sqrt{15})}{(8+2\sqrt{15})\times (8–2\sqrt{15})}$ = $\frac{8–2\sqrt{15}}{64–60}$ = $\frac{8–2\sqrt{15}}{4}$ The expression is $5–\frac{8+2\sqrt{15}}{4}–\frac{8–2\sqrt{15}}{4}$. = $\frac{20–8–2\sqrt{15}–8+2\sqrt{15}}{4}$ = $\frac{20–16}{4}$ = $\frac{20–16}{4}$ = $\frac{4}{4}$ = 1 Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{8+2 \sqrt{3}}{3 \sqrt{3}+5}=a \sqrt{3}–b$, then the value of $a + b$ is equal to:
Question : What is the value of $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}–\sqrt{5}} \div \frac{\sqrt{14}+\sqrt{10}}{\sqrt{14}–\sqrt{10}}+\frac{\sqrt{10}}{\sqrt{5}}$?
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $A=\frac{\sqrt{0.0004} \times \sqrt[3]{0.000008}}{\sqrt[4]{16000} \times \sqrt[3]{125000} \times \sqrt[4]{810}}$ and $B=\frac{\sqrt[3]{0.729} \times \sqrt[4]{0.0016}}{\sqrt{0.16}}$, then what is $A \times B$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile