Question : The value of $\frac{\operatorname{sin} 58^{\circ}}{\cos 32^{\circ}}+\frac{\sin 55^{\circ} \sec 35^{\circ}}{\tan 5^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$ is equal to:
Option 1: 2
Option 2: 1
Option 3: 0
Option 4: 3
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: 2
Solution :
Given:
$\frac{\operatorname{sin} 58^{\circ}}{\cos 32^{\circ}}+\frac{\sin 55^{\circ} \sec 35^{\circ}}{\tan 5^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$
$=\frac{\operatorname{sin} 58^{\circ}}{\cos (90^{\circ}-58^{\circ})}+\frac{\sin 55^{\circ} \cot 5^{\circ}}{\cos 35^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$
$=\frac{\operatorname{sin} 58^{\circ}}{\operatorname{sin} 58^{\circ}}+\frac{\sin 55^{\circ} \cot (90^{\circ}-85^{\circ})}{\cos (90^{\circ}-55^{\circ}) \tan 45^{\circ} \tan 85^{\circ}}$
$= 1+\frac{\sin 55^{\circ} \tan 85^{\circ}}{\sin 55^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$
$=1+\frac{1}{ \tan 45^{\circ}}$
$= 1+1$
$=2$
Hence, the correct answer is 2.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.