Question : The value of the expression $\sin^{2}1^{\circ}+\sin^{2}11^{\circ}+\sin^{2}21^{\circ}+\sin^{2}31^{\circ}+\sin^{2}41^{\circ}+\sin^{2}45^{\circ}+\sin^{2}49^{\circ}+\sin^{2}59^{\circ}+\sin^{2}69^{\circ}+\sin^{2}79^{\circ}+\sin^{2}89^{\circ}$ is:
Option 1: $0$
Option 2: $5\frac{1}{2}$
Option 3: $5$
Option 4: $4\frac{1}{2}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $5\frac{1}{2}$
Solution : $\sin^{2}1^{\circ}+\sin^{2}11^{\circ}+\sin^{2}21^{\circ}+\sin^{2}31^{\circ}+\sin^{2}41^{\circ}+\sin^{2}45^{\circ}+\sin^{2}49^{\circ}+\sin^{2}59^{\circ}+\sin^{2}69^{\circ}+\sin^{2}79^{\circ}+\sin^{2}89^{\circ}$ Using the identity $\sin(90^{\circ} - \theta) = \cos\theta$, we get, $\sin^{2}49^{\circ}=\sin^{2}(90^\circ-41^{\circ}) = \cos^2{41}^\circ$ $\sin^{2}59^{\circ}=\sin^{2}(90^\circ-31^{\circ}) = \cos^2{31}^\circ$ $\sin^{2}69^{\circ}=\sin^{2}(90^\circ-21^{\circ}) = \cos^2{21}^\circ$ $\sin^{2}79^{\circ}=\sin^{2}(90^\circ-11^{\circ}) = \cos^2{11}^\circ$ $\sin^{2}89^{\circ}=\sin^{2}(90^\circ-1^{\circ}) = \cos^2{1}^\circ$ $=\sin^{2}1^{\circ}+\sin^{2}11^{\circ}+\sin^{2}21^{\circ}+\sin^{2}31^{\circ}+\sin^{2}41^{\circ}+\sin^{2}45^{\circ}+\cos^{2}41^{\circ}+\cos^{2}31^{\circ}+\cos^{2}21^{\circ}+\cos^{2}11^{\circ}+\cos^{2}1^{\circ}$Each pair adds up to $1$ because $\sin^{2}\theta + \cos^{2}\theta = 1$ $=5+\sin^{2}45^{\circ}$ $=5+\frac{1}{2}$ $=\frac{11}{2}=5\frac{1}{2}$ Hence, the correct answer is $5\frac{1}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of $\frac{\operatorname{sin} 58^{\circ}}{\cos 32^{\circ}}+\frac{\sin 55^{\circ} \sec 35^{\circ}}{\tan 5^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$ is equal to:
Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Question : The value of ($\sin 45^\circ+\cos 45^\circ$) is___________.
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : Find the value of $\frac{\cos^{2}25^\circ-\sin^{2}65^\circ}{\cos^{2}25^\circ+\sin^{2}65^\circ}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile