Question : The value of the expression $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ is:
Option 1: $1235$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $0$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: $0$
Solution :
Given: $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$
$=\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \cot90^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$
We know the value of $\cot90°=0$
So, putting this value, the above expression becomes 0.
Hence, the correct answer is $0$.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.