Question : The value of the expression $\frac{(a-b)^{2}}{(b-c)(c-a)}+\frac{(b-c)^{2}}{(a-b)(c-a)}+\frac{(c-a)^{2}}{(a-b)(b-c)}$ is:
Option 1: $0$
Option 2: $3$
Option 3: $\frac{1}{3}$
Option 4: $2$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3$
Solution : Given: $\frac{(a-b)^{2}}{(b-c)(c-a)}+\frac{(b-c)^{2}}{(a-b)(c-a)}+\frac{(c-a)^{2}}{(a-b)(b-c)}$ Multiplying the numerator and denominator of each fraction by $(a-b)$, $(b-c)$ and $(c-a)$ respectively: $\frac{(a-b)^{2}×(a-b)}{(b-c)(c-a)(a-b)}+\frac{(b-c)^{2}(b-c)}{(a-b)(c-a)(b-c)}+\frac{(c-a)^{2}(c-a)}{(a-b)(b-c)(c-a)}$ = $\frac{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}{(a-b)(b-c)(c-a)}$ We know that $A^3+B^3+C^3=3ABC$ when $A + B + C = 0$ = ${\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}}$ = $3$ Hence, the correct answer is $3$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\small c+\frac{1}{c}=3$, then the value of $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ is:
Question : If $a+b+c+d=4$, then find the value of $\frac{1}{(1-a)(1-b)(1-c)}+\frac{1}{(1-b)(1-c)(1-d)}+\frac{1}{(1-c)(1-d)(1-a)}+\frac{1}{(1-d)(1-a)(1-b)}$?
Question : If $\sin A+\sin ^2 A=1$, then the value of the expression $\left(\cos ^2 A+\cos ^4 A\right)$ is
Question : If $a+\frac{1}{a}=2$ and $b+\frac{1}{b}=-2$, then what is the value of $a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2} ?$
Question : For real $a, b, c$ if $a^2+b^2+c^2=ab+bc+ca$, then value of $\frac{a+c}{b}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile