Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Option 1: $0$
Option 2: $\frac{1}{(x+y+z)}$
Option 3: $\frac{1}{(x+y)(y+z)(z+x)}$
Option 4: $1$
Correct Answer: $\frac{1}{(x+y)(y+z)(z+x)}$
Solution : Given: $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$ = $\frac{3(x-y)(y-z)(z-x)}{3(x^2-y^2)(y^2-z^2)(z^2-x^2)}$ [since $(x-y)+(y-z)+(z-x)=0$] = $\frac{(x-y)(y-z)(z-x)}{(x+y)(x-y)(y+z)(y-z)(z+x)(z-x)}$ = $\frac{1}{(x+y)(y+z)(z+x)}$ Hence, the correct answer is $\frac{1}{(x+y)(y+z)(z+x)}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : What is the simplified value of: $\frac{1}{8}\left\{\left(x+\frac{1}{y}\right)^2-\left(x-\frac{1}{y}\right)^2\right\}$
Question : If $\frac{1}{x+2}=\frac{3}{y+3}=\frac{1331}{z+1331}=\frac{1}{3}$, then what is the value of $\frac{x}{x+1}+\frac{y}{y+6}+\frac{z}{z+2662}$?
Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile