Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Option 1: $\frac{1}{4}$
Option 2: $\frac{1}{2}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{1}{9}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}$
Solution : Given expression, $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$ Let $x-y = a,$ $y-z = b,$ and $z-x = c$ ⇒ The given expression becomes, $\frac{a^3+b^3+c^3}{6abc}$ Now, $a+b+c= x-y+y-z+z-x = 0$ ⇒ When $a+b+c=0,\ a^3 + b^3 + c^3 = 3abc$ ⇒ $\frac{a^3+b^3+c^3}{6abc} = \frac{3abc}{6abc}=\frac{1}{2}$ Hence, the correct answer is $\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Question : What is the simplified value of $\frac{(x+y+z)(x y+y z+z x)–x y z}{(x+y)(y+z)(z+x)}$?
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : Let $x, y, z$ be fractions such that $x<y<z$. If $z$ is divided by $x$, the result is $\frac{5}{2}$, which exceeds $y$ by $\frac{7}{4}$. If $x+y+z=1 \frac{11}{12}$, then the ratio of $(z-x):(y-x)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile