Question : The value of $x$ which satisfies the equation $\frac{x \:+\: a^2 \:+\: 2c^2}{b \:+\: c} + \frac{x \:+\: b^2 \:+\: 2a^2}{c+a} + \frac{x \:+\: c^2 \:+\: 2b^2}{a \:+\: b} = 0$ is:
Option 1: $(a^2+b^2+c^2)$
Option 2: $- (a^2+b^2+c^2)$
Option 3: $(a^2+2b^2+c^2)$
Option 4: $-(a^2+b^2+2c^2)$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $- (a^2+b^2+c^2)$
Solution : Given: $\frac{x+a^2+2c^2}{b+c}+\frac{x+b^2+2a^2}{c+a}+\frac{x+c^2+2b^2}{a+b}=0$ We know the algebraic identity, $(x^2-y^2)=(x+y)(x-y)$. Substitute the value of $x=-(a^2+b^2+c^2)$ in the given equation, we get, $\frac{–a^2–b^2–c^2+a^2+2c^2}{b+c}+\frac{–a^2–b^2–c^2+b^2+2a^2}{c+a}+\frac{–a^2–b^2–c^2+c^2+2b^2}{a+b}=0$ $⇒\frac{c^2–b^2}{b+c}+\frac{a^2–c^2}{c+a}+\frac{b^2–a^2}{a+b}=0$ $⇒\frac{(c–b)(b+c)}{b+c}+\frac{(a–c)(c+a)}{c+a}+\frac{(b–a)(a+b)}{a+b}=0$ $⇒c-b+a-c+b-a=0$ $⇒0=0$ It satisfies the equation. Hence, the correct answer is $-(a^2+b^2+c^2)$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$, then the value of $\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$ is:
Question : If $x+\frac{1}{x}=c+\frac{1}{c}$, then the value of $x$ is:
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : The graphs of the equations $4 x+\frac{1}{3} y=\frac{8}{3}$ and $\frac{1}{2} x+\frac{3}{4} y+\frac{5}{2}=0$ intersect at a point P. The point P also lies on the graph of the equation:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile