12 Views

Question : Three sides of a triangle are $\sqrt{a^2+b^2}, \sqrt{(2 a)^2+b^2}$, and $\sqrt{a^2+(2 b)^2}$ units. What is the area (in unit squares) of the triangle?

Option 1: $\frac{5}{2} ab $

Option 2: $3 ab$

Option 3: $4 ab$

Option 4: $\frac{3}{2} ab $


Team Careers360 14th Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: $\frac{3}{2} ab $


Solution :
Given that the three sides of a triangle are $\sqrt{a^2+b^2}$, $\sqrt{(2a)^2+b^2}$, and $\sqrt{a^2+(2b)^2}$ units.
Let's assume that $a=b$.
The sides of the triangle become = $\sqrt{2a^2}$, $\sqrt{5a^2}$, $\sqrt{5a^2} =a\sqrt{2}$, $a\sqrt{5}$, $a\sqrt{5}$.
From this, we can say the triangle is an isosceles triangle with $\sqrt{5a^2}$ being the two equal sides.
The area of an isosceles triangle is $\frac{1}{2} \times \text{base} \times \sqrt{(\text{side})^2 - (\frac{\text{base}}{2})^2}$.
Here, the base of the isosceles triangle is $a\sqrt{2}$ and the equal sides are $a\sqrt{5}$.
Substituting these values into the formula,
Area = $\frac{1}{2} \times a\sqrt{2} \times \sqrt{(a\sqrt{5})^2 - (\frac{a\sqrt{2}}{2})^2}$
= $\frac{a}{2} \times \sqrt{2[(a\sqrt{5})^2 - (\frac{a\sqrt{2}}{2})^2]}$
= $\frac{a}{2} \times \sqrt{2[(5a^2 - (\frac{a^2}{2})]}$
= $\frac{a}{2} \times \sqrt{9a^2}$
= $\frac{3a^2}{2}$
Since $a=b$ ⇒ $\frac{3}{2}ab=\frac{3a^2}{2}$
Hence, the correct answer is $\frac{3}{2}ab$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books