16 Views

Question : Two circles each of radius 36 cm are intersecting each other such that each circle passes through the centre of the other circle. What is the length of the common chord to the two circles?

Option 1: $24 \sqrt{3}$ cm

Option 2: $12 \sqrt{3} $ cm

Option 3: $36 \sqrt{3}$ cm

Option 4: $16 \sqrt{3}$ cm


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: $36 \sqrt{3}$ cm


Solution :
Given: Two circles each of radius 36 cm intersect each other such that each circle passes through the centre of the other circle.
OO' = OC = 36 cm
⇒ OA = AO' = $\frac{36}{2}=18$ cm (radius)
Using Pythagoras theorem in $\triangle AOC$,
${CA}^2+{OA}^2={OC}^2$.
⇒ ${CA}^2={OC}^2–{OA}^2$
⇒ ${CA}^2={36}^2–{18}^2$
⇒ ${CA}^2=1296–324=972$
⇒ $CA=18\sqrt3$ cm
The length of the common chord to the two circles = $2\times CA=2\times 18\sqrt3=36\sqrt3$ cm.
Hence, the correct answer is $36\sqrt3$ cm.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books