31 Views

Question : Two circles having equal radii intersect each other such that each passes through the centre of the other. The length of the common chord is 24 cm, so what will be the diameter of each circle?

Option 1: $16 \sqrt{3}$ cm

Option 2: $8 \sqrt{3}$ cm

Option 3: $12 \sqrt{3}$ cm

Option 4: $10 \sqrt{3}$ cm


Team Careers360 5th Jan, 2024
Answer (1)
Team Careers360 6th Jan, 2024

Correct Answer: $16 \sqrt{3}$ cm


Solution :

AD = DB
Let, $O{_1}O{_2} = 2x$
Again $O{_1}A = O{_2}A = 2x$ [Radius of the circle]
$\angle ADO{_1} = 90°$
$O{_1}D = O{_2}D = \frac{2x}{2} = x$
$AD = \frac{1}{2}AB = 12$
Using the Pythagorean theorem,
We get,
$AD^2 = AO{_1}^2 +O{_1}D^2 $
⇒ $(12)^2 = (4x^2 - x^2)$
⇒ $12 = \sqrt{3x^2}$
⇒ $x = 4\sqrt3$
⇒ Radius = $2x$ = 8$\sqrt3$
⇒ Diameter = 2$\times$radius = $8\sqrt{3} × 2 = 16\sqrt3$
Hence, the correct answer is $16 \sqrt{3}$ cm.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books