5 Views

Question : Two circles of radius 13 cm and 15 cm intersect each other at points A and B. If the length of the common chord is 24 cm, then what is the distance between their centres?

Option 1: 12 cm

Option 2: 16 cm

Option 3: 14 cm

Option 4: 18 cm


Team Careers360 3rd Jan, 2024
Answer (1)
Team Careers360 13th Jan, 2024

Correct Answer: 14 cm


Solution :
Given: Two circles of radius 13 cm and 15 cm with centres O and P intersect at A and B.
OP is the distance between the centres of circles.
AB intersects OP at Q.
AB = 24 cm
AQ = BQ= $\frac{24}{2}$
= 12 cm
$OQ= \sqrt{(OA^2-AQ^2)}$
$=\sqrt{(13^2-12^2)}= 5$
$PQ= \sqrt{(AP^2-AQ^2)}$
$=\sqrt{(15^2-12^2)}= 9$
$OP= OQ+PQ= 5+9= 14$
Hence, the correct answer is 14 cm.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books