108 Views

Question : Two circles with their centres at O and P and radii 8 cm and 4 cm respectively touch each other externally. The length of their common tangent is:

Option 1: 8.5 cm

Option 2: $\frac{8}{\sqrt{2}}$ cm

Option 3: $8\sqrt{2}$ cm

Option 4: 8 cm


Team Careers360 25th Jan, 2024
Answer (1)
Team Careers360 27th Jan, 2024

Correct Answer: $8\sqrt{2}$ cm


Solution :
Given, OQ = 8 cm and PR = 4 cm
Construction: Draw a perpendicular from P to OQ.
Since QR is a tangent, $\angle$ OQR = $\angle$ PRQ = 90$^\circ$
So, PSQR forms a rectangle.
Applying Pythagoras theorem in $\triangle$ POS,
PO 2 = OS 2 + PS 2
⇒ (8+4) 2 = (8-4) 2 + QR 2
⇒ QR 2 = 144 – 16
⇒ QR = $8\sqrt{2}$ cm.
Hence, the correct answer is $8\sqrt{2}$ cm.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books