Question : Using $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$, find the value of $\tan 15°$.
Option 1: $\sqrt{3}+1$
Option 2: $\sqrt{3}-1$
Option 3: $2-\sqrt{3}$
Option 4: $2+\sqrt{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2-\sqrt{3}$
Solution : Given: $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$ ⇒ $\tan (45°-30°)=\frac{\tan 45°-\tan 30°}{1+\tan 45° \tan 30°}$ ⇒ $\tan15° = \frac{(1-\frac{1}{\sqrt3})}{(1+\frac{1}{\sqrt3})}$ ⇒ $\tan15° = \frac{(\sqrt3-1)}{(\sqrt3+1)}$ After rationalizing, ⇒ $\tan15°=2-\sqrt{3}$ Hence, the correct answer is $2-\sqrt{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of $\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ} \tan 15^{\circ}}$?
Question : What is the value of $\cos ^2 15°?$
Question : What is the value of $\cos45° \sin15°$?
Question : If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}; 0°<(A+B)<90°; A > B$, then the values of $A$ and $B$ are respectively:
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile