Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of $\operatorname{cosec} 75°$.
Option 1: $\frac{\sqrt{6}+\sqrt{2}}{4}$
Option 2: $\frac{\sqrt{6}-\sqrt{2}}{4}$
Option 3: $\sqrt{6}-\sqrt{2}$
Option 4: $\sqrt{6}+\sqrt{2}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\sqrt{6}-\sqrt{2}$
Solution : Given: $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$ To find the value of $\operatorname{cosec} 75°$, take $\alpha=45°,\beta=30°$ Now putting their values in the equation we get, $\operatorname{cosec}(45°+30°) = \frac{\sec 45° \times \sec 30° \times \operatorname{cosec} 45° \times \operatorname{cosec} 30°}{\sec 45° \times \operatorname{cosec} 30°+\operatorname{cosec} 45° \times \sec 30°}$ ⇒ $\operatorname{cosec}(45°+30°) = \frac{\sqrt2\times \frac{2}{\sqrt{3}}\times \sqrt2\times 2 }{\sqrt 2×2+\sqrt2×\frac{2}{\sqrt{3}})}$ ⇒ $\operatorname{cosec}(45°+30°) = \frac{\frac{2\sqrt2\times 2\sqrt2}{\sqrt{3}}}{2×\sqrt{2}×(1+\frac{1}{\sqrt{3}})}$ ⇒ $\operatorname{cosec}(45°+30°) = \frac{2×\sqrt{2}×(\sqrt{3}-1)}{(\sqrt{3}+1)×(\sqrt{3}-1)}$ ⇒ $\operatorname{cosec}(45°+30°) = \frac{2×\sqrt{6}-2×\sqrt{2}}{2}$ ⇒ $\operatorname{cosec}75°= \sqrt{6}-\sqrt{2}$ Hence, the correct answer is $(\sqrt{6}-\sqrt{2})$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\tan(\alpha -\beta)=1,\sec(\alpha +\beta)=\frac{2}{\sqrt{3}}$ and $\alpha ,\beta$ are positive, then the smallest value of $\alpha$ is:
Question : If $\tan\alpha=2$, then the value of $\frac{\operatorname{cosec}^{2}\alpha-\sec^{2}\alpha}{\operatorname{cosec}^{2}\alpha+\sec^{2}\alpha}$ is:
Question : Simplify $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
Question : Find the value of $\tan 3 \theta$, if $\sec 3 \theta=\operatorname{cosec}\left (4 \theta-15°\right)$.
Question : If $\frac{\cos \beta}{\sec \alpha}=15$ and $\frac{\sin \beta}{\sec \alpha}=16$, the value of $\sin ^2 \beta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile