Question : $x$ varies inversely as the square of $y$. Given that $y=2$ for $x=1$, the value of $x$ for $y=6$ will be equal to:
Option 1: 3
Option 2: 9
Option 3: $\frac{1}{3}$
Option 4: $\frac{1}{9}$
New: SSC MTS 2024 Application Form OUT; Direct Link
Don't Miss: Month-wise Current Affairs | Upcoming Government Exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{9}$
Solution : $x$ varies inversely as a square of $y$. $⇒x=\frac{a}{y^2}$, where $a$ is constant At $y=2, x=1$ $⇒1=\frac{a}{2^2}$ $⇒a=4$ If $y=6$, then, $\therefore x=\frac{4}{6^2}=\frac{4}{36}=\frac{1}{9}$ Hence, the correct answer is $\frac{1}{9}$.
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Question : If $\mathrm{X: Y=3: 2}$, then what is the value of $\mathrm{(X-Y):(X+Y) }$?
Question : If $(7 x+y):(7 x–y)=7: 2$, then what is the value of $x: y$?
Question : If $x=-1$, then the value of $\frac{1}{x^{99}}+\frac{1}{x^{98}}+\frac{1}{x^{97}}+\frac{1}{x^{96}}+\frac{1}{x^{95}}+\frac{1}{x^{94}}+\frac{1}{x}-1$ is:
Question : If $\frac{1}{2}: x:: x: \frac{1}{8}$, find the positive value of $x$.
Question : If $A=\frac{2}{3} \div \frac{4}{9}, B=\frac{6}{11} \times\frac{33}{12}$ and $C=\frac{1}{3} \times \frac{9}{2}$, then what is the value of $A \times B-C$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile