Hi there,
Your question is incomplete but I am assuming that from identity 4 you mean this identity:
(x+a) (x+b) = x2 ( square of x) +(a+b)x+ab
Now put a=2, b=3 ,x=5 in this identity
L.H.S (x+a) (x+b) = (5+2) (5+3)
= (7) (8)
= 56
R.H.S= square of x + (a+b) x + ab
= square of 5 + ( 2+3) 5 + 2×3
=5×5 + (5)5 +6
= 25+25+6
= 50+6
=56
Hence L.H.S = R.H.S
So identity is verified
Hope it helps you
Good luck!
Question : The factors of $ x^4+x^2+25$ are:
Option 1: $\left(x^2+3 x-5\right)\left(x^2-3 x+5\right)$
Option 2: $\left(x^2+3 x+5\right)\left(x^2-3 x+5\right)$
Option 3: $\left(x^2-3 x+5\right)\left(x^2-3 x+5\right)$
Option 4: $\left(x^2+3 x+5\right)\left(x^2+3 x+5\right)$
Question : What is the LCM of $\left(8 x^3+80 x^2+200 x\right)$ and $\left(4 x^4+16 x^3-20 x^2\right)$?
Option 1: $8 x^2(x+5)^2(x-1)$
Option 2: $8 x^2(x-1)^2(x+5)$
Option 3: $4 x^2(x-1)^2(x+5)$
Option 4: $4 x^2(x+5)^2(x-1)$
Question : The LCM of $x^2-8x + 15$ and $x^2-5x + 6$ is:
Option 1: $(x-2)(x-3)^2(x-5)$
Option 2: $(x + 5) (x + 2) (x + 3)$
Option 3: $(x + 5) (x - 2) (x - 3)$
Option 4: $(x - 5) (x - 2) (x - 3)$
Question : An example of an equality relation of two expressions in $x$. Which is not an identity, is:
Option 1: $(x+3)^{2}=x^{2}+6x+9$
Option 2: $(x+2y)^{3}=x^{3}+8y^{3}+6xy(x+2y)$
Option 3: $(x+2)^{2}=x^{2}+2x+4$
Option 4: $(x+3)(x–3)=x^{2}–9$
Question : The simplified form of $(x+3)^2+(x-1)^2$ is:
Option 1: $(x^2+2x+5)$
Option 2: $2(x^2+2x+5)$
Option 3: $(x^2-2x+5)$
Option 4: $2(x^2-2x+5)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile