Question : What is the HCF of $\frac{4}{5}, \frac{6}{8}, \frac{8}{25}?$
Option 1: $\frac{1}{100}$
Option 2: $\frac{1}{5}$
Option 3: $\frac{1}{50}$
Option 4: $\frac{1}{200}$
Correct Answer: $\frac{1}{100}$
Solution : HCF of $\frac{4}{5}, \frac{6}{8}, \frac{8}{25} =\frac{\text{HCF of numerator}}{\text{LCM of denominator}}$ HCF of numerator (i.e. 4, 6 and 8) = 2 LCM of denominator (i.e. 5, 8 and 25) = 200 So, the HCF of $\frac{4}{5}, \frac{6}{8}, \frac{8}{25} =\frac{2}{200} =\frac{1}{100}$ Hence, the correct answer is $\frac{1}{100}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $(1-\frac{1}{5})(1-\frac{1}{6})(1-\frac{1}{7}).......(1-\frac{1}{100})$ is equal to:
Question : The value of $6 \frac{8}{15}÷\frac{7}{9}$ of $\left(1 \frac{1}{10}+5 \frac{1}{5}\right)+\frac{2}{5}÷7 \frac{1}{5}$ is:
Question : Find the value of the following expression. $\frac{\left[\frac{5}{8}-\left\{\frac{3}{8}-\left(\frac{5}{8}-\frac{3}{8}\right)\right\}\right] \text { of } 8.8-1.2}{4 \frac{1}{6} \div 2.5 \times 2 \div \frac{1}{6} \text { of } 60+\left(\frac{3}{4}-\frac{3}{8}\right)}$
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : What is the positive value of the following expression? $\sqrt{36 \div 15 \text { of } 2 \text { of }[25 \times 4 \div 4 \text { of }\{29-(8-11) \div(9 \times 5 \div 5 \text { of } 3)\}]}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile