A function is continuous at $\mathrm{x}=\mathrm{c}$ if the function is defined at $x=c$ and if the value of the function at $x=c$ equals the limit of the function at $x=c$ and a function $f(x)$ is differentiable at a point ' $a$ ' in its domain if limit of the function $f^{\prime}(x)$ exists at $x=a$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile