Question : What is the simplified value of $(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^{4}+1)(x^{2}+1)(x+1)?$
Option 1: $x^{256}-1$
Option 2: $\frac{x^{128}-1}{x-1}$
Option 3: $\frac{x^{64}-1}{x-1}$
Option 4: $\frac{x^{256}-1}{x-1}$
Correct Answer: $\frac{x^{256}-1}{x-1}$
Solution : Given: $(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^{4}+1)(x^{2}+1)(x+1)$ Multiplying $(x-1)$ in both numerator and denominator, $\frac{(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^{4}+1)(x^{2}+1)(x+1)(x-1)}{(x-1)}$ Using identity: $(a^2-b^2)=(a-b)(a+b)$, = $\frac{(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^{4}+1)(x^{2}+1)(x^2-1)}{(x-1)}$ = $\frac{(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^{4}+1)(x^4-1)}{(x-1)}$ = $\frac{(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^8-1)}{(x-1)}$ = $\frac{(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{16}-1)}{(x-1)}$ = $\frac{(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{32}-1)}{(x-1)}$ = $\frac{(x^{128}+1)(x^{64}+1)(x^{64}-1)}{(x-1)}$ = $\frac{(x^{128}+1)(x^{128}-1)}{(x-1)}$ = $\frac{(x^{256}-1)}{(x-1)}$ Hence, the correct answer is $\frac{(x^{256}-1)}{(x-1)}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the simplified value of $(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x-\frac{1}{x})(x^{16}+\frac{1}{x^{16}})(x+\frac{1}{x})(x^{4}+\frac{1}{x^{4}})?$
Question : What is the simplified value of $(3+1)(3^{2}+1)(3^{4}+1)(3^{8}+1)(3^{16}+1)$?
Question : What is the simplified value of $(2+1)(2^{2}+1)(2^{4}+1)(2^{8}+1)$?
Question : If $\frac{x^8+1}{x^4}=14$, then the value of $\frac{x^{12}+1}{x^6}$ is:
Question : What is the simplified value of: $\frac{1}{8}\left\{\left(x+\frac{1}{y}\right)^2-\left(x-\frac{1}{y}\right)^2\right\}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile