Question : What is the simplified value of $(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x-\frac{1}{x})(x^{16}+\frac{1}{x^{16}})(x+\frac{1}{x})(x^{4}+\frac{1}{x^{4}})?$
Option 1: $(x^{64}+\frac{1}{x^{64}})$
Option 2: $\frac{(x^{64}-\frac{1}{x^{64}})}{(x^2+\frac{1}{x^2})}$
Option 3: $\frac{(x^{64}-\frac{1}{x^{64}})}{(x+\frac{1}{x})}$
Option 4: $\frac{(x^{32}-\frac{1}{x^{32}})}{(x+\frac{1}{x})}$
Correct Answer: $\frac{(x^{64}-\frac{1}{x^{64}})}{(x^2+\frac{1}{x^2})}$
Solution : Given: $(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x-\frac{1}{x})(x^{16}+\frac{1}{x^{16}})(x+\frac{1}{x})(x^{4}+\frac{1}{x^{4}})$ $=(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x^2-\frac{1}{x^2})(x^{16}+\frac{1}{x^{16}})(x^{4}+\frac{1}{x^{4}})$ Multiplying it by $\frac{(x^2+\frac{1}{x^2})}{(x^2+\frac{1}{x^2})}$, we get, $= \frac{(x^2+\frac{1}{x^2})}{(x^2+\frac{1}{x^2})}×(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x^2-\frac{1}{x^2})(x^{16}+\frac{1}{x^{16}})(x^{4}+\frac{1}{x^{4}})$ $= \frac{1}{(x^2+\frac{1}{x^2})}×(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x^{16}+\frac{1}{x^{16}})(x^{4}+\frac{1}{x^{4}})(x^{4}-\frac{1}{x^{4}})$ $= \frac{1}{(x^2+\frac{1}{x^2})}×(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x^{16}+\frac{1}{x^{16}})(x^{8}-\frac{1}{x^{8}})$ $= \frac{1}{(x^2+\frac{1}{x^2})}×(x^{32}+\frac{1}{x^{32}})(x^{16}+\frac{1}{x^{16}})(x^{16}-\frac{1}{x^{16}})$ $= \frac{1}{(x^2+\frac{1}{x^2})}×(x^{32}+\frac{1}{x^{32}})(x^{32}-\frac{1}{x^{32}})$ $= \frac{1}{(x^2+\frac{1}{x^2})}×(x^{64}-\frac{1}{x^{64}})$ $= \frac{(x^{64}-\frac{1}{x^{64}})}{(x^2+\frac{1}{x^2})}$ Hence, the correct answer is $\frac{(x^{64}-\frac{1}{x^{64}})}{(x^2+\frac{1}{x^2})}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the simplified value of $(x^{128}+1)(x^{32}+1)(x^{64}+1)(x^{16}+1)(x^{8}+1)(x^{4}+1)(x^{2}+1)(x+1)?$
Question : What is the simplified value of $(3+1)(3^{2}+1)(3^{4}+1)(3^{8}+1)(3^{16}+1)$?
Question : What is the simplified value of $(2+1)(2^{2}+1)(2^{4}+1)(2^{8}+1)$?
Question : If $\frac{x^8+1}{x^4}=14$, then the value of $\frac{x^{12}+1}{x^6}$ is:
Question : What is the simplified value of: $\frac{1}{8}\left\{\left(x+\frac{1}{y}\right)^2-\left(x-\frac{1}{y}\right)^2\right\}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile