Question : What is the simplified value of $\frac{(x+y+z)(x y+y z+z x)–x y z}{(x+y)(y+z)(z+x)}$?
Option 1: $y$
Option 2: $z$
Option 3: $1$
Option 4: $x$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $1$
Solution : Given: The expression is $\frac{(x+y+z)(x y+y z+z x)–x y z}{(x+y)(y+z)(z+x)}$. $\frac{(x+y+z)(x y+y z+z x)–x y z}{(x+y)(y+z)(z+x)}$ Substitute the value of $x=y=z=1$, in the given expression, we get, = $\frac{(1+1+1)(1\times1+1\times 1+1\times 1)–1\times1\times1}{(1+1)(1+1)(1+1)}$ = $\frac{3\times 3–1}{2\times 2\times 2}=\frac{9–1}{8}$ = $\frac{8}{8}$ = $1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile