Question : What is the value of $\left[\frac{12}{(\sqrt5+\sqrt3)}+\frac{18}{(\sqrt{5}-\sqrt3)}\right]$?
Option 1: $15(\sqrt5–\sqrt3)$
Option 2: $3(5\sqrt5+\sqrt3)$
Option 3: $15(\sqrt5+\sqrt3)$
Option 4: $3(3\sqrt5+\sqrt3)$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3(5\sqrt5+\sqrt3)$
Solution : Given: $\left[\frac{12}{(\sqrt5+\sqrt3)}+\frac{18}{(\sqrt{5}-\sqrt3)}\right]$ = $\frac{12\sqrt5-12\sqrt 3+18\sqrt5+18\sqrt 3}{(\sqrt5+\sqrt3)(\sqrt{5}-\sqrt3)}$ = $\frac{30\sqrt5+6\sqrt3}{5-3}$ = $\frac{6(5\sqrt5+\sqrt3)}{2}$ = $3(5\sqrt5+\sqrt3)$ Hence, the correct answer is $3(5\sqrt5+\sqrt3)$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Question : The value of $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$ is equal to:
Question : Which of the following is TRUE? I. $\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt5}$ II. $\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt5}$ III. $\frac{1}{\sqrt5}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}$
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile