Question : What is the value of $99 \frac{11}{99}+99 \frac{13}{99}+99 \frac{15}{99}+.....+99 \frac{67}{99}$?
Option 1: $\frac{94220}{33}$
Option 2: $\frac{95120}{33}$
Option 3: $\frac{97120}{33}$
Option 4: $\frac{96220}{33}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{95120}{33}$
Solution : Given: The series is $99 \frac{11}{99}+99 \frac{13}{99}+99 \frac{15}{99}+....+99 \frac{67}{99}$. ⇒ $(99+99+99+......)+(\frac{11}{99}+\frac{13}{99}+...+\frac{67}{99})$ The number of terms in the series is given by $t_n=a+(n–1)d$ where $t_n$ is the last term, $a$ is the first term, $d$ is the common difference and $n$ is the number of terms. ⇒ $\frac{67}{99}=\frac{11}{99}+(n–1)\times\frac{2}{99}$ ⇒ $67=11+(n–1)\times 2$ ⇒ $56=2\times (n–1)$ ⇒ $ (n–1)=28$ ⇒ $n=29$ So, the number of terms is 29. The given series can be written as $99\times 29+(\frac{11}{99}+\frac{13}{99}+...+\frac{67}{99})$. $S_n=\frac{n}{2}[2a+(n–1)d]$ = $99\times 29+\frac{29}{2}\times[2\times\frac{11}{99}+28\times\frac{2}{99}]$ = $99\times 29+\frac{29\times11}{99}+29\times\frac{28}{99}=99\times 29+29(\frac{11}{99}+\frac{28}{99})$ = $99\times 29+29\times\frac{11+28}{99}=99\times 29+29\times\frac{39}{99}$ = $29[99+\frac{13}{33}]=29\times\frac{3267+13}{33}$ = $29\times\frac{3280}{33}=\frac{95120}{33}$ Hence, the correct answer is $\frac{95120}{33}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : Let $x=\frac{5 \frac{3}{4}-\frac{3}{7} \times 15 \frac{3}{4}+2 \frac{2}{35} \div 1 \frac{11}{25}}{\frac{3}{4} \div 5 \frac{1}{4}+5 \frac{3}{5} \div 3 \frac{4}{15}}$. When $y$ is added to $x$, the result is $\frac{7}{13}$. What is the value of $y$?
Question : If $2=x+\frac{1}{1+\frac{1}{5+\frac{1}{2}}}$, then the value of $x$ is equal to:
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : The value of $1 \frac{3}{4}+1 \frac{5}{7} \div 2 \frac{3}{7} \times 2 \frac{3}{7}=$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile