6 Views

Question : What is the value of $99 \frac{11}{99}+99 \frac{13}{99}+99 \frac{15}{99}+.....+99 \frac{67}{99}$?

Option 1: $\frac{94220}{33}$

Option 2: $\frac{95120}{33}$

Option 3: $\frac{97120}{33}$

Option 4: $\frac{96220}{33}$


Team Careers360 12th Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $\frac{95120}{33}$


Solution : Given: The series is $99 \frac{11}{99}+99 \frac{13}{99}+99 \frac{15}{99}+....+99 \frac{67}{99}$.
⇒ $(99+99+99+......)+(\frac{11}{99}+\frac{13}{99}+...+\frac{67}{99})$
The number of terms in the series is given by $t_n=a+(n–1)d$ where $t_n$ is the last term, $a$ is the first term, $d$ is the common difference and $n$ is the number of terms.
⇒ $\frac{67}{99}=\frac{11}{99}+(n–1)\times\frac{2}{99}$
⇒ $67=11+(n–1)\times 2$
⇒ $56=2\times (n–1)$
⇒ $ (n–1)=28$
⇒ $n=29$
So, the number of terms is 29.
The given series can be written as $99\times 29+(\frac{11}{99}+\frac{13}{99}+...+\frac{67}{99})$.
$S_n=\frac{n}{2}[2a+(n–1)d]$
= $99\times 29+\frac{29}{2}\times[2\times\frac{11}{99}+28\times\frac{2}{99}]$
= $99\times 29+\frac{29\times11}{99}+29\times\frac{28}{99}=99\times 29+29(\frac{11}{99}+\frac{28}{99})$
= $99\times 29+29\times\frac{11+28}{99}=99\times 29+29\times\frac{39}{99}$
= $29[99+\frac{13}{33}]=29\times\frac{3267+13}{33}$
= $29\times\frac{3280}{33}=\frac{95120}{33}$
Hence, the correct answer is $\frac{95120}{33}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books