Question : What is the value of $\frac{\cos 50^{\circ}}{\sin 40^{\circ}}+\frac{3 \operatorname{cosec} 80^{\circ}}{\sec 10^{\circ}}–2 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}$?
Option 1: 3
Option 2: 2
Option 3: 5
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: The trigonometric expression is $\frac{\cos 50^{\circ}}{\sin 40^{\circ}}+\frac{3 \operatorname{cosec} 80^{\circ}}{\sec 10^{\circ}}-2 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}$. Use the trigonometric formulas, $\cos( 90^{\circ}- \theta) =\sin \theta$, $\operatorname{cosec}( 90^{\circ}-\theta)=\sec \theta$ and $\sin \theta=\frac{1}{\operatorname{cosec}\theta}$. $\frac{\cos 50^{\circ}}{\sin 40^{\circ}}+\frac{3 \operatorname{cosec} 80^{\circ}}{\sec 10^{\circ}}-2 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}$ $=\frac{\cos( 90^{\circ}-40^{\circ} ) }{\sin 40^{\circ}}+\frac{3 \operatorname{cosec}( 90^{\circ}-10^{\circ})}{\sec 10^{\circ}}-2 \cos( 90^{\circ}-40^{\circ}) \operatorname{cosec} 40^{\circ}$ $=\frac{\sin 40^{\circ}}{\sin 40^{\circ}}+\frac{3 \sec 10^{\circ}}{\sec 10^{\circ}}-2 \sin 40^{\circ} \frac{1}{\sin 40^{\circ}}=1+3-2=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : The value of $\frac{\left(\cos 9^{\circ}+\sin 81^{\circ}\right)\left(\sec 9^{\circ}+{\operatorname{cosec}} \;81^{\circ}\right)}{{\operatorname{cosec}}^2 \;71^{\circ}+\cos ^2 15^{\circ}-\tan ^2 19^{\circ}+\cos ^2 75^{\circ}} $ is:
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : What is the value of $3 \sin ^2 30^{\circ}+\frac{3}{5} \cos ^2 60^{\circ}–2 \sec ^2 45^{\circ} $?
Question : $\frac{(1+\sec \theta \operatorname{cosec} \theta)^2(\sec \theta-\tan \theta)^2(1+\sin \theta)}{(\sin \theta+\sec \theta)^2+(\cos \theta+\operatorname{cosec} \theta)^2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile